Problem–Based Learning in Communication Systems Using MATLAB and Simulink
Gebonden Engels 2016 9781119060345Samenvatting
Designed to help teach and understand communication systems using a classroom–tested, active learning approach.
Discusses communication concepts and algorithms, which are explained using simulation projects, accompanied by MATLAB and Simulink
Provides step–by–step code exercises and instructions to implement execution sequences
Includes a companion website that has MATLAB and Simulink model samples and templates
Specificaties
Lezersrecensies
Inhoudsopgave
<p>Acknowledgments xvii</p>
<p>Notation and List of Symbols xix</p>
<p>List of Acronyms xxi</p>
<p>Content–Mapping Table with Major Existing Textbooks xxiii</p>
<p>Lab Class Assignment Guide xxv</p>
<p>About the Companion Website xxvii</p>
<p>1 MATLAB and Simulink Basics 1</p>
<p>1.1 Operating on Variables and Plotting Graphs in MATLAB, 1</p>
<p>1.2 Using Symbolic Math, 3</p>
<p>1.3 Creating and Using a Script File (m–File), 4</p>
<p>1.4 [A]User–Defined MATLAB Function, 7</p>
<p>1.5 Designing a Simple Simulink File, 8</p>
<p>1.6 Creating a Subsystem Block, 12</p>
<p>2 Numerical Integration and Orthogonal Expansion 16</p>
<p>2.1 Simple Numerical Integration, 16</p>
<p>2.2 Orthogonal Expansion, 18</p>
<p>References, 23</p>
<p>3 Fourier Series and Frequency Transfer Function 24</p>
<p>3.1 Designing the Extended Fourier Series System, 24</p>
<p>3.2 Frequency Transfer Function of Linear Systems, 25</p>
<p>3.3 Verification of the Frequency Transfer Function of Linear Systems in Simulink, 27</p>
<p>3.4 Steady–State Response of a Linear Filter to a Periodic Input Signal, 29</p>
<p>References, 31</p>
<p>4 Fourier Transform 33</p>
<p>4.1 The Spectrum of Sinusoidal Signals, 33</p>
<p>4.2 The Spectrum of Any General Periodic Functions, 36</p>
<p>4.3 Analysis and Test of the Spectra of Periodic Functions, 37</p>
<p>4.4 Spectrum of a Nonperiodic Audio Signal, 40</p>
<p>References, 44</p>
<p>5 Convolution 45</p>
<p>5.1 Sampled Time–Limited Functions, 45</p>
<p>5.2 Time–Domain View of Convolution, 48</p>
<p>5.3 Convolution with the Impulse Function, 50</p>
<p>5.4 Frequency–Domain View of Convolution, 51</p>
<p>Reference, 54</p>
<p>6 Low Pass Filter and Band Pass Filter Design 55</p>
<p>6.1 [T]Analysis of the Spectrum of Sample Audio Signals, 55</p>
<p>6.2 Low Pass Filter Design, 57</p>
<p>6.3 LPF Operation, 61</p>
<p>6.4 [A]Band Pass Filter Design, 63</p>
<p>Reference, 65</p>
<p>7 Sampling and Reconstruction 66</p>
<p>7.1 Customizing the Analog Filter Design Block to Design an LPF, 66</p>
<p>7.2 Storing and Playing Sound Data, 67</p>
<p>7.3 Sampling and Signal Reconstruction Systems, 68</p>
<p>7.4 Frequency Up–Conversion without Resorting to Mixing with a Sinusoid, 75</p>
<p>References, 77</p>
<p>8 Correlation and Spectral Density 78</p>
<p>8.1 Generation of Pulse Signals, 78</p>
<p>8.2 Correlation Function, 79</p>
<p>8.3 Energy Spectral Density, 87</p>
<p>References, 89</p>
<p>9 Amplitude Modulation 90</p>
<p>9.1 Modulation and Demodulation of Double Sideband–Suppressed Carrier Signals, 90</p>
<p>9.2 Effects of the Local Carrier Phase and Frequency Errors on Demodulation Performance, 95</p>
<p>9.3 [A]Design of an AM Transmitter and Receiver without Using an Oscillator to Generate the Sinusoidal Signal, 98</p>
<p>Reference, 100</p>
<p>10 Quadrature Multiplexing and Frequency Division Multiplexing 101</p>
<p>10.1 Quadrature Multiplexing and Frequency Division Multiplexing Signals and Their Spectra, 101</p>
<p>10.2 Demodulator Design, 104</p>
<p>10.3 Effects of Phase and Frequency Errors in QM Systems, 105</p>
<p>Reference, 108</p>
<p>11 Hilbert Transform, Analytic Signal, and SSB Modulation 109</p>
<p>11.1 Hilbert Transform, Analytic Signal, and Single–Side Band Modulation, 109</p>
<p>11.2 Generation of Analytic Signals Using the Hilbert Transform, 111</p>
<p>11.3 Generation and Spectra of Analytic and Single–Side Band Modulated Signals, 114</p>
<p>11.4 Implementation of an SSB Modulation and Demodulation System Using a Band Pass Filter, 117</p>
<p>References, 122</p>
<p>12 Voltage–Controlled Oscillator and Frequency Modulation 123</p>
<p>12.1 [A]Impact of Signal Clipping in Amplitude Modulation Systems, 123</p>
<p>12.2 Operation of the Voltage–Controlled Oscillator and Its Use in an FM Transmitter, 126</p>
<p>12.3 Implementation of Narrowband FM, 130</p>
<p>References, 134</p>
<p>13 Phase–Locked Loop and Synchronization 135</p>
<p>13.1 Phase–Locked Loop Design, 135</p>
<p>13.2 FM Receiver Design Using the PLL, 142</p>
<p>13.3 [A]Data Transmission from a Mobile Phone to a PC over the Near–Ultrasonic Wireless Channel, 146</p>
<p>References, 89</p>
<p>9 Amplitude Modulation 90</p>
<p>9.1 Modulation and Demodulation of Double Sideband–Suppressed Carrier Signals, 90</p>
<p>9.2 Effects of the Local Carrier Phase and Frequency Errors on Demodulation Performance, 95</p>
<p>9.3 [A]Design of an AM Transmitter and Receiver without Using an</p>
<p>Oscillator to Generate the Sinusoidal Signal, 98</p>
<p>Reference, 100</p>
<p>10 Quadrature Multiplexing and Frequency Division Multiplexing 101</p>
<p>10.1 Quadrature Multiplexing and Frequency Division Multiplexing Signals and Their Spectra, 101</p>
<p>10.2 Demodulator Design, 104</p>
<p>10.3 Effects of Phase and Frequency Errors in QM Systems, 105</p>
<p>Reference, 108</p>
<p>11 Hilbert Transform, Analytic Signal, and SSB Modulation 109</p>
<p>11.1 Hilbert Transform, Analytic Signal, and Single–Side Band Modulation, 109</p>
<p>11.2 Generation of Analytic Signals Using the Hilbert Transform, 111</p>
<p>11.3 Generation and Spectra of Analytic and Single–Side Band Modulated Signals, 114</p>
<p>11.4 Implementation of an SSB Modulation and Demodulation System Using a Band Pass Filter, 117</p>
<p>References, 122</p>
<p>12 Voltage–Controlled Oscillator and Frequency Modulation 123</p>
<p>12.1 [A]Impact of Signal Clipping in Amplitude Modulation Systems, 123</p>
<p>12.2 Operation of the Voltage–Controlled Oscillator and Its Use in an FM Transmitter, 126</p>
<p>12.3 Implementation of Narrowband FM, 130</p>
<p>References, 134</p>
<p>13 Phase–Locked Loop and Synchronization 135</p>
<p>13.1 Phase–Locked Loop Design, 135</p>
<p>13.2 FM Receiver Design Using the PLL, 142</p>
<p>13.3 [A]Data Transmission from a Mobile Phone to a PC over the Near–Ultrasonic Wireless Channel, 146</p>
<p>References, 150</p>
<p>14 Probability and Random Variables 151</p>
<p>14.1 Empirical Probability Density Function of Uniform Random Variables, 151</p>
<p>14.2 Theoretical PDF of Gaussian Random Variables, 152</p>
<p>14.3 Empirical PDF of Gaussian RVs, 153</p>
<p>14.4 Generating Gaussian RVs with Any Mean and Variance, 155</p>
<p>14.5 Verifying the Mean and Variance of the RV Represented by MATLAB Function randn(), 155</p>
<p>14.6 Calculation of Mean and Variance Using Numerical Integration, 156</p>
<p>14.7 [A]Rayleigh Distribution, 158</p>
<p>References, 159</p>
<p>15 Random Signals 160</p>
<p>15.1 Integration of Gaussian Distribution and the Q–Function, 160</p>
<p>15.2 Properties of Independent Random Variables and Characteristics of Gaussian Variables, 162</p>
<p>15.3 Central Limit Theory, 165</p>
<p>15.4 Gaussian Random Process and Autocorrelation Function, 168</p>
<p>References, 173</p>
<p>16 Maximum Likelihood Detection for Binary Transmission 174</p>
<p>16.1 Likelihood Function and Maximum Likelihood Detection over an Additive White Gaussian Noise Channel, 174</p>
<p>16.2 BER Simulation of Binary Communications over an AWGN Channel, 178</p>
<p>16.3 [A]ML Detection in Non–Gaussian Noise Environments, 182</p>
<p>References, 183</p>
<p>17 Signal Vector Space and Maximum Likelihood Detection I 184</p>
<p>17.1 [T]Orthogonal Signal Set, 184</p>
<p>17.2 [T]Maximum Likelihood Detection in the Vector Space, 185</p>
<p>17.3 MATLAB Coding for MLD in the Vector Space, 187</p>
<p>17.4 MLD in the Waveform Domain, 189</p>
<p>References, 191</p>
<p>18 Signal Vector Space and Maximum Likelihood Detection II 192</p>
<p>18.1 Analyzing How the Received Signal Samples Are Generated, 192</p>
<p>18.2 Observing the Waveforms of 4–Ary Symbols and the Received Signal, 195</p>
<p>18.3 Maximum Likelihood Detection in the Vector Space, 196</p>
<p>19 Correlator–Based Maximum Likelihood Detection 200</p>
<p>19.1 Statistical Characteristics of Additive White Gaussian Noise in the Vector Space, 200</p>
<p>19.2 Correlation–Based Maximum Likelihood Detection, 205</p>
<p>Reference, 208</p>
<p>20 Pulse Shaping and Matched Filter 209</p>
<p>20.1 [T]Raised Cosine Pulses, 209</p>
<p>20.2 Pulse Shaping and Eye Diagram, 210</p>
<p>20.3 Eye Diagram after Matched Filtering, 216</p>
<p>20.4 Generating an Actual Electric Signal and Viewing the Eye Diagram in an Oscilloscope, 218</p>
<p>References, 223</p>
<p>21 BER Simulation at theWaveform Level 224</p>
<p>21.1 EB/N0 Setting in Baseband BPSK Simulation, 224</p>
<p>21.2 Matched Filter and Decision Variables, 228</p>
<p>21.3 Completing the Loop for BER Simulation, 230</p>
<p>21.4 [A]Effects of the Roll–off Factor on BER Performance When There Is a Symbol Timing Error, 234</p>
<p>21.5 Passband BPSK BER Simulation and Effects of Carrier Phase Errors, 235</p>
<p>Reference, 238</p>
<p>22 QPSK and Offset QPSK in Simulink 239</p>
<p>22.1 Characteristics of QPSK Signals, 239</p>
<p>22.2 Implementation of the QPSK Transmitter, 241</p>
<p>22.3 Implementation of the QPSK Receiver, 243</p>
<p>22.4 SNR Setting, Constellation Diagram, and Phase Error, 245</p>
<p>22.5 BER Simulation in Simulink Using a Built–in Function sim( ), 247</p>
<p>22.6 Pulse Shaping and Instantaneous Signal Amplitude, 249</p>
<p>22.7 Offset QPSK, 252</p>
<p>References, 253</p>
<p>23 Quadrature Amplitude Modulation in Simulink 254</p>
<p>23.1 Checking the Bit Mapping of Simulink QAM Modulator, 254</p>
<p>23.2 Received QAM Signal in AWGN, 258</p>
<p>23.3 Design of QAM Demodulator, 260</p>
<p>23.4 BER Simulation, 262</p>
<p>23.5 Observing QAM Signal Trajectory Using an Oscilloscope, 266</p>
<p>References, 268</p>
<p>24 Convolutional Code 269</p>
<p>24.1 Encoding Algorithm, 269</p>
<p>24.2 Implementation of Maximum Likelihood Decoding Based on</p>
<p>Exhaustive Search, 273</p>
<p>24.3 Viterbi Decoding (Trellis–Based ML Decoding), 277</p>
<p>24.4 BER Simulation of Coded Systems, 284</p>
<p>References, 287</p>
<p>25 Fading, Diversity, and Combining 289</p>
<p>25.1 Rayleigh Fading Channel Model and the Average BER, 289</p>
<p>25.2 BER Simulation in the Rayleigh Fading Environment, 292</p>
<p>25.3 Diversity, 295</p>
<p>25.4 Combining Methods, 296</p>
<p>References, 300</p>
<p>26 Orthogonal Frequency Division Multiplexing in AWGN Channels 302</p>
<p>26.1 Orthogonal Complex Sinusoid, 302</p>
<p>26.2 Generation of Orthogonal Frequency Division Multiplexing Signals, 303</p>
<p>26.3 Bandwidth Efficiency of OFDM Signals, 306</p>
<p>26.4 Demodulation of OFDM Signals, 307</p>
<p>26.5 BER Simulation of OFDM Systems, 307</p>
<p>References, 310</p>
<p>27 Orthogonal Frequency Division Multiplexing over Multipath Fading Channels 311</p>
<p>27.1 Multipath Fading Channels, 311</p>
<p>27.2 Guard Interval, CP, and Channel Estimation, 314</p>
<p>27.3 BER Simulation of OFDM Systems over Multipath Fading Channels, 319</p>
<p>References, 323</p>
<p>28 MIMO System Part I: Space Time Code 324</p>
<p>28.1 System Model, 324</p>
<p>28.2 Alamouti Code, 327</p>
<p>28.3 Simple Detection of Alamouti Code, 330</p>
<p>28.4 [A]Various STBCs, Their Diversity Orders, and Their Rates, 334</p>
<p>References, 335</p>
<p>29 MIMO System Part II: Spatial Multiplexing 336</p>
<p>29.1 MIMO for Spatial Multiplexing, 336</p>
<p>29.2 MLD Based on Exhaustive Search for SM MIMO, 337</p>
<p>29.3 Zero Forcing Detection, 340</p>
<p>29.4 Noise Enhancement of ZF Detection, 341</p>
<p>29.5 Successive Interference Cancellation Detection, 343</p>
<p>29.6 BER Simulation of ZF, SIC, OSIC, and ML Detection Schemes, 347</p>
<p>29.7 Relationship among the Number of Antennas, Diversity, and Data Rate, 350</p>
<p>References, 352</p>
<p>30 Near–Ultrasonic Wireless Orthogonal Frequency Division Multiplexing Modem Design 353</p>
<p>30.1 Image File Transmission over a Near–Ultrasonic Wireless Channel, 353</p>
<p>30.2 Analysis of OFDM Transmitter Algorithms and the Transmitted Signals, 355</p>
<p>30.3 Analysis of OFDM Receiver Algorithms and the Received Signals, 357</p>
<p>30.4 Effects of System Parameters on the Performance, 361</p>
<p>Index 363</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan