,

Design, Modeling and Characterization of Bio-Nanorobotic Systems

Paperback Engels 2014 9789400797574
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Nanorobots represent a nanoscale device where proteins such as DNA, carbon nanotubes could act as motors, mechanical joints, transmission elements, or sensors. When these different components were assembled together they can form nanorobots with multi-degree-of-freedom, able to apply forces and manipulate objects in the nanoscale world. Design, Modeling and Characterization of Bio-Nanorobotic Systems investigates the design, assembly, simulation, and prototyping of biological and artificial molecular structures with the goal of implementing their internal nanoscale movements within nanorobotic systems in an optimized manner.

Specificaties

ISBN13:9789400797574
Taal:Engels
Bindwijze:paperback
Uitgever:Springer Netherlands

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<P>1. Introduction. 2. Current State-Of-The-Art On Nanorobotic Components And Design. 2.1. Introduction. 2.2. Nanorobotics device structures. 2.3. Virtual Reality Techniques for Bio-nanotechnology Design. 2.4. Modeling and Characterization Methods. 2.5. Conclusion. 3. Methodology Of Design And Characterization Of Bionano- And Nanorobotic Devices. 3.1. Introduction. 3.2. Design and characterization methodology of biological nanodevices. 3.3. Co-prototyping of nanorobotic structures. 3.4. Conclusion. 4. Design And Computational Analysis Of Bio-Nanorobotic Structures. 4.1. Introduction. 4.2. Characterization of protein-based nanosprings. 4.3. Multiscale Design and Modeling of Protein-based Nanomechanisms. 4.4. DNA nanorobotics. 4.5. Design and Computational Analysis of a Linear Nanotube Servomotorusing DNA Actuation. 4.6. Multiscale platform as application for drug delivery characterization. 4.7. Conclusion. 5. Characterization And Prototyping Of Nanostructures. 5.1. Introduction. 5.2. Characterization of NEMS based on linear bearings. 5.3. Design of rotatory nanomotors based on head to head nanotubesn shuttles. 5.4. Attogram mass transport and vaporization through carbon nanotube. 5.5. Conclusion. 6. Conclusion and future prospects.</P>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Design, Modeling and Characterization of Bio-Nanorobotic Systems